

List of the topics discussed during the exercise sessions

- $8/5\,$ Details on the BGG correspondence for complexes of modules and adjointness of ${\bf R}$ and ${\bf L}.$
- 15/5 Details of: $M_{\geq r}$ has a linear resolution and $\mathbf{R}(M_{\geq r})$ is acyclic for $r \geq \operatorname{reg} M$; computation of the cohomology groups of $\Omega^i_{\mathbb{P}^n}(j)$.
- 22/5 Remarks on the Beilinson window; prove of the fact that the matrix given at the end of the lecture gives rise to a vector bundle (the Horrocks-Mumford).
- $28/5\,$ Why can we detect a vector bundle in a finite computation? And a few remarks on Chow forms.
- $12/6\,$ Verify that a sheaf with a linear resolution is an Ulrich sheaf; prove that if X has an Ulrich sheaf, also its Veronese embeddings do.
- $18/6\,$ Facets, outer facets and supporting hyperplanes of the Boij-Söderberg cone of Betti tables; an example.
- 3/7 Cohomology tables of supernatural vector bundles; decomposing \mathcal{I}_p , ideal sheaf of a point in \mathbb{P}^2 , into supernatural vector bundles.
- 17/7 The key point in the Boij-Söderberg Theorem is the positivity of the $\langle F, \mathcal{E} \rangle$ and its "truncated variants": let's prove it.